Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e13118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321407

RESUMO

Background: Soybean is the main oilseed crop grown in the world; however, drought stress affects its growth and physiology, reducing its yield. The objective of this study was to characterize the physiological, metabolic, and genetic aspects that determine differential resistance to water deficit in soybean genotypes. Methods: Three soybean genotypes were used in this study, two lineages (L11644 and L13241), and one cultivar (EMBRAPA 48-C48). Plants were grown in pots containing 8 kg of a mixture of soil and sand (2:1) in a greenhouse under sunlight. Soil moisture in the pots was maintained at field capacity until the plants reached the stage of development V4 (third fully expanded leaf). At this time, plants were subjected to three water treatments: Well-Watered (WW) (plants kept under daily irrigation); Water Deficit (WD) (withholding irrigation until plants reached the leaf water potential at predawn of -1.5 ± 0.2 MPa); Rewatered (RW) (plants rehydrated for three days after reached the water deficit). The WW and WD water treatments were evaluated on the eighth day for genotypes L11644 and C48, and on the tenth day for L13241, after interruption of irrigation. For the three genotypes, the treatment RW was evaluated after three days of resumption of irrigation. Physiological, metabolic and gene expression analyses were performed. Results: Water deficit inhibited growth and gas exchange in all genotypes. The accumulation of osmolytes and the concentrations of chlorophylls and abscisic acid (ABA) were higher in L13241 under stress. The metabolic adjustment of lineages in response to WD occurred in order to accumulate amino acids, carbohydrates, and polyamines in leaves. The expression of genes involved in drought resistance responses was more strongly induced in L13241. In general, rehydration provided recovery of plants to similar conditions of control treatment. Although the C48 and L11644 genotypes have shown some tolerance and resilience responses to severe water deficit, greater efficiency was observed in the L13241 genotype through adjustments in morphological, physiological, genetic and metabolic characteristics that are combined in the same plant. This study contributes to the advancement in the knowledge about the resistance to drought in cultivated plants and provides bases for the genetic improvement of the soybean culture.


Assuntos
Glycine max , Folhas de Planta , Glycine max/genética , Folhas de Planta/genética , Ácido Abscísico/metabolismo , Solo , Regulação da Expressão Gênica
2.
Sci Total Environ ; 810: 152204, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902413

RESUMO

Changes in photosynthetic machinery can induce physiological and biochemical damage in plants. Low doses of glyphosate have been shown to exert a positive effect in mitigating the deleterious effects of water deficit in plants. Here, the physiological and biochemical mechanisms of safflower plants (Carthamus tinctorius L.) were studied under conditions of water deficit mediated by the attenuating effect of low-dose glyphosate. The plants were divided into two groups of water regimes in soil, without water deficit (-10 kPa) and with water deficit (-70 kPa), and were exposed to different concentrations of glyphosate (0, 1.8, 3.6, 7.2, 18, 36, 72, 180, 360, and 720 g a.e. ha-1). Evident protective responses at the physiological and biochemical levels were obtained after applying low doses of glyphosate to plants under water deficit, with a limiting dose for the occurrence of hormesis (LDS) = 72 g a.e. ha-1. The water deficit in plants resulted in hydrogen peroxide (H2O2) accumulation and consequently lipid peroxidation (LPO) associated with the accumulation of shikimic acid and glyphosate in plants, which triggered an increase in the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) that act by dismuting the levels of reactive oxygen species (ROS), maintaining, and/or increasing the maximum quantum efficiency of photosystem II (Fv/Fm), effective quantum yield of photosystem II (ΦPSII), electron transport rate (ETR), photochemical extinction coefficient (qP), and non-photochemical extinction coefficient (NPQ). APX appears to be the main enzyme involved in eliminating H2O2. Low doses of glyphosate act as water deficit ameliorators, allowing the plant to maintain/increase metabolism at physiological and biochemical levels by activating antioxidant enzymes in the dismutation of ROS in safflower plants.


Assuntos
Carthamus tinctorius , Antioxidantes/metabolismo , Carthamus tinctorius/metabolismo , Glicina/análogos & derivados , Hormese , Peróxido de Hidrogênio , Fotossíntese , Estresse Fisiológico , Água , Glifosato
3.
Plant Physiol Biochem ; 158: 228-243, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33218845

RESUMO

To meet the growing demand for soybean it is necessary to increase crop yield, even in low water availability conditions. To circumvent the negative effects of water deficit, application of biostimulants with anti-stress effect has been adopted, including products based on fulvic acids and Ascophyllum nodosum (L.) seaweed extracts. In this study, we determined which formulation and dosage of a biostimulant is more efficient in promoting the recovery of soybean plants after stress due to water deficit. The experiment was conducted in a greenhouse, in a double-factorial randomized block design with two additional factors, four repetitions and eleven treatments consisting of three biostimulant formulations (F1, F2 and F3), and three dosages (0.25; 0.50 and 1.0 kg ha-1); a control with water deficit and a control without water deficit. Soybean plants were kept at 50% of the pot's water capacity for three days, then rehydrated and submitted to the application of treatments with biostimulant. After two days of recovery, growth, physiological, biochemical and yield parameters were evaluated. All plants that received the application of the biostimulant produced more than the water-stressed control plants. The biostimulant provided higher photosynthetic rates, more efficient mechanisms for dissipating excess energy and higher activities of antioxidant enzymes. Plants treated with biostimulant were more efficient in the recovery of the metabolic activities after rewatering, resulting in increased soybean tolerance to water deficit and reduced yield losses. The best result obtained was through the application of formulation 2 of the biostimulant at a dosage of 0.25 kg ha-1.


Assuntos
Ascophyllum/química , Benzopiranos/farmacologia , Desidratação , Glycine max/fisiologia , Extratos Vegetais/farmacologia , Água , Alga Marinha/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...